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Abstract 
 

The Domain Name System (DNS) protocol was introduced to solve a naming problem in 
TCP/IP networking, namely, to provide a translation service of system names to network 
addresses (i.e., Internet Protocol (IP) addresses).  The protocol was not developed with a 
requirement to support multilevel secure (MLS) networks.  However, the Department of 
Defense (DoD) vision for the Global Information Grid (GIG) entails support for 
multilevel networks. In the future, DNS installations must securely deal with multilevel 
issues.  This paper describes specific design recommendations for providing MLS DNS in 
the context of the GIG Vision, and the Monterey Security Architecture (MYSEA) Testbed.  
It also describes several other potential MLS DNS architectures along with their 
advantages and disadvantages. 

1 Introduction 
The purpose of this section is to provide the reader with enough background information 
to understand the terminology used and the principles discussed in the remainder of the 
report.  Topics covered are those relevant to naming schemes for the Internet and security 
concepts relevant to the subsequent analysis and recommendations. 

1.1 Name and Address Translation 
All computers that participate in a TCP/IP network, such as the Internet, must be assigned 
an IP network address, which is minimally a 32-bit number [1].  All traffic on the 
network layer is sent and routed based on IP addresses.  A given network node observes 
all packets that traverse its network connection and processes only the ones whose 
destination address match its own address.  Network nodes that provide a service usually 
have names associated with them too, because people can remember names more easily 
than long numbers.  For a client computer to request a service on behalf of the user, it 
must be able to translate the named source provided by the user to the numbered IP 
address of the server.  The Domain Name System (DNS) protocol was developed to 
transparently provide this translation.  When a user on a client references another system 
by name, the client queries the configured DNS server for the IP address of the given 
name.  Upon receipt of the corresponding IP address, the client can then send a 
transmission to the requested destination. 
 
A computer implementing the DNS protocol provides a name-to-address mapping service 
(and vice versa), and is referred to as a DNS server.  A DNS server maintains a database 
of names and matching IP addresses.  When a client computer is configured for a 
network, the IP address of a local DNS server must be provided if the client is ever 
expected to dynamically map names to IP addresses.   

 
The high-level concept of the DNS protocol is fairly straightforward, but the details, 
configuration and other added functionality make it much more complex.  For example, 
there is no single DNS server where all the names and addresses of all the computers on 
the Internet are maintained.  The DNS protocol specifies a distributed database made up 
of many DNS servers. 
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1.2 Distributed DNS Databases 
Each computer name on the Internet is part of what is called the “domain name space”.  
Distribution of the DNS database occurs by breaking up the domain name space into 
smaller domains, which in turn can be broken up further into other sub-domains.  The 
top-level domains are familiar: .com, .edu, .net, and so forth.  When the XYZ University 
connects to the Internet, its DNS domain might be xyz.edu.  If the university staff would 
like to manage their own DNS server, the authority to do so is delegated to them by the 
.edu authority, and an entry in the top-level .edu domain would be made, mapping the 
xyz.edu name to the XYZ DNS server IP address.  The university may manage all 
mappings on their campus computers, or they could in turn delegate to another level, such 
as to the Computer Science (CS) department, creating a third-level domain, cs.xyz.edu.  
The xyz.edu DNS server would no longer contain mappings for the CS computers; 
instead it would contain an entry that maps the CS DNS server name to that server’s IP 
address. 
 
When a client in the XYZ CS department needs to translate a name to another computer 
in the CS department, it queries its local CS DNS server, which returns the translation.  If 
a CS client needs to translate a name to a computer in the Physics department, it contacts 
the CS DNS server, and then the CS DNS server queries its parent DNS servers.  Then, if 
the Physics department also had its own DNS server, the CS DNS Server would then 
query the Physics DNS server, which would then return the translation.  In other words, 
given the fully qualified name of a computer (i.e., its full name with respect to the 
domain name space, such as client1.physics.xyz.edu), there is enough information to 
walk up and down the distributed DNS tree to find the server from which the answer to 
the query can be obtained. 
  
When it is necessary to update DNS data for a domain (e.g., when a host is added or 
removed), the change is made in the appropriate authoritative DNS server by the 
delegated organization such that queries for the IP address can be properly serviced.  This 
new information may also be replicated automatically to slave DNS servers to provide 
redundancy and performance benefits. 
 
DNS servers also support the determination of the IP address of a domain’s e-mail server.  
If an e-mail is addressed to someone@acme.com, it is unlikely that Acme’s mail server is 
on the acme.com host.  Instead of trying to connect to the e-mail port of the acme.com 
host, the forwarding system requests what is called an MX record from the DNS server 
that has the mapping of Acme’s name.  The MX record contains the IP address of 
Acme’s mail server. 

1.3 Iterative and Recursive DNS Requests 
The client program or library that understands the DNS protocol and makes DNS 
requests is known as a resolver.  Most resolvers only have enough intelligence to ask its 
configured DNS server to return the IP address of a given name.  This is known as a 
recursive request, because the resolver needs the local DNS server to do whatever it takes 
to resolve the name, even if it means asking many other DNS servers for help.  If the 
local DNS server knows the answer, then it returns it to the resolver.  If it does not know 



  
| Technical Report NPS-CS-09-004

 

  3 

the answer, then it has enough information to query other DNS servers one at a time until 
it is resolved.  These individual one-at-a-time requests are known as iterative requests. 
 
The importance of this distinction between recursive and iterative requests is that for the 
former a client will make one request to a server and wait for an answer, while the local 
DNS server often communicates with other DNS servers to get the answer.  In other 
words, both client-to-server and server-to-server communications must be supported. 

1.4 DNS Implementations 
BIND (Berkeley Internet Name Domain) is the most commonly used DNS software on 
the Internet, and has been available since 1987. [2][3]  It is considered the reference 
implementation of the DNS protocols. [4]  BIND 9 is the current major release, and is 
large and complex open source software with almost 400,000 lines of code1 across 1100+ 
files.  BIND 9 constitutes a major rewrite of the previous release, and includes new 
features, such as support for the larger IP version 6 addresses [5] and additional security 
settings. 
 
The BIND distribution provides three separate components: 1) the DNS daemon that 
performs the DNS service, 2) a DNS library for application development, and 3) an array 
of tests to verify the proper operation of the software.  The code dedicated to the daemon 
itself is approximately 72,000 lines of code.2 Because of its “reference implementation” 
reputation, BIND implements all specified DNS functionality.  In addition to the 
complexity of the software, the syntax for the DNS daemon configuration file has a 
reputation for being complex.  There are, of course, other open source DNS 
implementations [4], some of which claim to be BIND replacements, but with less 
functionality, which may or may not be desirable.  
 
In addition to open source DNS implementations, there are commercial products 
available.  With respect to security, perhaps most notable of the commercial products are 
those from Secure64, which claims that their products are “designed from the ground up 
for availability, security, and performance.” [6] However, their products have not been 
evaluated against an accepted security standard (such as the Common Criteria [7]) to 
verify their claims.  

1.5 Mandatory Access Control (MAC) 
Access control policies can be grouped into one of two categories: 1) Discretionary 
Access Control (DAC) and 2) Mandatory Access Control (MAC).  In addition, 
supporting policies provide for accountability and other security requirements.  DAC 
policies provide opportunities to modify access control settings, such as who can access 
an object or the name of the object owner, with implementations that present a run-time 
interface to make those modifications.  DAC implementations can be found in various 

                                                 
1 This figure was determined using BIND version 9.4.0a6.  It was a “raw” count which included comments 
and white space over all .c and .h files. 
2 This is a result of a “raw” count of the source and header files in the bind-9.4.0a6/bin directory 
hierarchy of the source tree. 
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forms on most modern operating systems, such as recent versions of Microsoft Windows, 
and all varieties of Unix. 
 
MAC policies, on the other hand, enforce static policies and provide no run-time 
interface for policy modifications, such as the sensitivity level of a subject or object, or 
for changing the rules of access.  MAC policies have application in government and 
commercial environments.  From a government point of view, files can be classified at 
various levels of confidentiality, such as Secret and Top Secret.  Once a file has been 
marked as Secret, the owner’s desire to share the file with others is constrained to those 
who are authorized (cleared) to see Secret documents, hence the name “mandatory”.  If 
computers or networks support a MAC policy, they are said to be Multilevel Secure 
(MLS). 
  
When a computer enforces a MAC policy, special problems must be addressed at the 
policy and data labeling level.  For example, the policy must clearly resolve the 
following: if a file is classified as Secret, but a user trying to access it does not have the 
necessary clearance: 1) Should the user be allowed to even see that the file exists?, or 2) 
should the user get a “you do not have permission” error, or 3) should he get a “this file 
does not exist” error?  If the existence of the file should be hidden from those without 
adequate authorization, it would require the system to “lie” to such people by saying it 
does not exist.  Conversely, if the existence of the file is to be exposed to unauthorized 
users, then modulation of the file’s existence or metadata can result in covert channels 
through which information can be leaked from a high sensitivity level to a low one [8].  
Such MAC policy questions boil down to the following: 1) Is metadata (such as file 
names and the presence of files) to be protected by the MAC policy? If so, 2) How is 
static metadata to be labeled?  One approach is that all static metadata must be labeled at 
the same level as the data it describes.  Another approach, called “compatibility”, is that 
static metadata must have a confidentiality label that is dominated by the data’s 
confidentiality label [9], i.e., the metadata must be labeled at or below the level of the 
data it describes.  Dynamic metadata must be managed in a way that does not introduce 
covert channels into the system [10]. 
 
The Bell and LaPadula model was developed to formally show the soundness of a MAC 
confidentiality policy, as described above, which is capable of being enforced by a 
computer. [9]  The model, among other things, stipulates properties that must hold true, 
which are translated into the two rules given below: 

• Read Down 
A subject can only read objects at or below its current sensitivity level, 
otherwise known as the subject’s access class. 

• Write Up 
A subject can only modify objects at or above its access class. 

The latter rule is necessary to prevent subjects at a higher access class from writing 
information from objects at a high access class into objects at a lower access class. 
 
Supporting policies are those that are needed for the proper operation and oversight of 
DAC and MAC policies.  For example, DAC requires an Identification and 
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Authentication (I&A) policy to be in force because they depend on knowing the identity 
of the user to make access control decisions.  MAC requires I&A so that a session level 
can be set that is commensurate with the user’s clearance or authorizations. 

1.6 Session Level 
When a user is added to an MLS system, the administrator must designate the user’s 
clearance, which allows the system to know the confidentiality upper bound for that user.  
However, when considering the rules of the Bell and LaPadula model, and how they 
affect an actual implementation, it is not advisable to have subjects running with the 
absolute clearance of a user at all times.  Sometimes a user with a Secret clearance may 
need to write Unclassified information into an Unclassified file, but any software used on 
behalf of the user may not be trusted to not write Secret information into the Unclassified 
file.  Therefore, to prevent against undesired flows of information from high sensitivity to 
low sensitivity, subjects are restricted to run at a single level, dominated by the clearance 
of the user, and the user is required to specify the access class of the subjects running on 
his behalf.  Setting this specified access class is known as setting the session level. 
 
For example, if a user wants to write to a Secret object, the user sets the session level to 
Secret.  The user may still read objects at or below the session level, but can only write to 
Secret objects, per the Bell and LaPadula rules.  If the user needs to write to Unclassified 
objects, the Secret session must be exited, and a new session must be established at the 
Unclassified level.  The user is then unable to read or write to objects above the 
Unclassified level, but can read and write objects at the Unclassified level. 

1.7 Confidentiality Levels versus Confidentiality Categories 
Most people are familiar with confidentiality levels, such as Secret and Top Secret.  
There are a limited number of them.  These levels are hierarchical in nature, meaning that 
given two levels, either one of them will represent a greater confidentiality than the other, 
or they will be equal.  There is, however, a way of providing more granularity and control 
of access by introducing, in addition to levels, confidentiality categories. 
 
A confidentiality category is often a marking that provides a greater description of what 
the data relates to, or what kinds of people should see the data.  For example, a file could 
have an access class that consists of the Secret level and the Nuclear category, perhaps 
indicating that the file contains information that is related to a nuclear subject, or should 
only be viewed by those engaged in nuclear research, depending on how an agency 
defines its categories. 
 
An object can be assigned only one confidentiality level, but it can have any number of 
categories, including none at all.  Categories are not hierarchical, thus two different 
categories cannot be compared to see which has “more” confidentiality.  However, 
categories are used to enforce mandatory “need to know” policies.  Sets of categories 
may be assigned to both subjects and objects.  If an object has a given category, then the 
categories in the subject’s access class must be a superset of the categories assigned to 
the object for the subject to read the object (as well as the usual access check on the 
confidentiality level).  Because there are a large number of categories within the DoD and 
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the intelligence community, the possible number of unique access classes is large, 
considering all the permutations of levels and categories. 

1.8 DoD System-High Networks, Domain Names and IP 
Addresses 

The Department of Defense (DoD) operates several system-high networks, such as the 
NIPRNET at the sensitive-but-unclassified level, the SIPRNET at the Secret level, and 
JWICS at the Top Secret level.  For security reasons, these networks are designed to have 
limited connectivity, if any.  For example, devices exist between the NIPRNET and 
SIPRNET that permit limited information flow so it can only go from low to high, while 
JWICS is intended to have no physical connections to lower-level networks. 
 
Even though these networks do not really offer services to each other, and have little or 
no physical connections, the DoD policy assigns IP addresses and domain names in such 
a way that they remain unique across all networks [11].  There appear to be two benefits 
for this policy: 1) if a high-level system accidentally connects to a low-level network (or 
vice versa) there is a smaller chance that data will leak inappropriately; and 2) if all the 
networks really do collapse into one integrated network in the future, the task of re-
addressing a large number of systems is avoided. 
 
Dividing a DNS domain into sub-domains according to access class provides the obvious 
benefit of helping users see the access class of a host address, and it also makes it easy to 
send an iterative DNS request to the correct server.  For example, the DoD uses the 
“.mil” DNS domain as its root, the “.smil.mil” as a Secret DNS sub-domain, and perhaps 
“.ts.mil” for a TS DNS sub-domain.   

1.9 MYSEA Testbed 
The Monterey Security Architecture (MYSEA) Testbed was built to support research on 
MLS services, clients and networks [12].  It consists of a federation of high assurance 
MLS MYSEA Servers that connect to several single-level networks running at different 
simulated confidentiality levels, as well as a single MLS network.  By changing their 
session level, users on the MLS network can access the single-level networks without 
moving to a different client.  In return, users on the single-level networks can access 
services on MYSEA Servers configured to respond to their access class. 
 
A primary objective of the multilevel testbed research project is to demonstrate how U.S. 
participants can use a single workstation for multilevel access to U.S. and coalition 
WANS at different classification levels. Currently, the testbed supports experimentation 
with access to multilevel as well as multiple single level (MSL) networks. It supports 
commercial office productivity applications in the context of high assurance multilevel 
security. The Testbed also supports experimentation and development of MLS aware 
applications in the context of high assurance MLS policy enforcement and dynamic 
security services, two areas that are critical to the realization of the DoD’s vision for 
assured information sharing [12]. 
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The MYSEA server acts as a nexus for MLS policy enforcement and for communication 
between the MLS network and the several single-level system-high networks.  For users 
on the MLS network, it provides a variety of MLS services, such as e-mail and web 
services.  This is done by securely binding a client’s IP address to the user’s session level.  
For example, when a user requests a web page, the MYSEA Server spawns a web 
daemon with the user’s credentials and session level.  The daemon is restricted by the 
policies enforced by the underlying server. 
 
The MYSEA Testbed is prototyping a multiple single-level-at-a-time (SLAT) client that 
can interact with the MYSEA server in a secure manner.  An MSL client can operate at a 
particular session level at one time, but can read information at a lower sensitivity level 
and perhaps write up, e.g., send e-mail to a higher sensitivity level. 
 
The testbed is currently limited in its DNS capabilities.  Each single-level network can 
run its own DNS server to service systems on its respective network.  While the clients 
on the MLS network can be configured to use one of the single-level networks for DNS, 
they cannot access a DNS server that manages all the available access classes without 
modifying the DNS settings after each change of session level.  In addition, there is no 
multilevel DNS service provided by the MLS Server, for example, so that a client on a 
Secret network could read DNS information from an Unclass DNS server. 

1.10 Global Information Grid 
The Global Information Grid (GIG) is a DoD network of networks.  The GIG Vision [13] 
is an attempt to describe the desired functionality of the GIG in the year 2020.  In this 
vision, the system-high networks (e.g., NIPRNET and SIPRNET) are collapsed into one 
secure MLS network with clients that are either dedicated to a single access class or an 
MSL client.  

1.11 Covert Channels 
A covert channel is an unintentional method of communicating data between two or more 
parties by manipulating return values or timing changes in relation to a sequentially 
accessed shared resource.  Covert channels are of special interest in MLS systems 
because they can potentially provide a way to bypass the enforced MAC policies.  For 
example, a high-level subject can transfer a bit of information by either filling up a disk, 
or not filling up a disk, while a low-level subject is either successful creating a new file 
(or unsuccessful) at the agreed upon time. Systems that enforce MAC policies must be 
carefully designed to eliminate or seriously impede covert channels. 

1.12 Trusted Computing Base 
The hardware, firmware and software that are trusted to enforce a system’s security 
polices are known as the Trusted Computing Base (TCB).  The security perimeter is the 
logical boundary between the TCB and the untrusted parts of the system. 
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1.13 Trusted Subjects 
An MLS system should enforce its policies in the lowest layers of the overall system, 
such that they are always invoked when a subject tries to get access to an object.  There 
can be designs, however, that require applications to support a MAC policy.  Generally, 
these are in higher layers within the overall system.  In such cases, these applications are 
referred to as trusted, because they are trusted to ensure that the intent of the security 
policy is observed outside the kernel or operating system.  Having trusted applications 
extends the security perimeter to encompass those applications and any parts of the 
system the trusted applications depend upon.  Trusted subjects usually permit something 
contrary to the enforced policy to occur, but they are trusted to observe the intent of the 
policy. When dealing with sensitive data, such applications must be worthy of that trust, 
which only comes from adhering to rigorous development practices that address security 
concerns.  High assurance can be achieved by following requirements derived from well-
known standards, such as those described in the Common Criteria (CC) [7].  In general, a 
well-designed MLS system limits its dependence on trusted subjects, if they are used at 
all.  For example, modifying an open source web server to enforce a MAC policy of some 
sort would make the web server a trusted subject, but it is not worthy of that trust, and is 
likely a bad design choice.  Just because it is trusted does not mean that it is trustworthy. 

2 The Problem 
This section provides specific direction and MLS DNS requirements, as well as policy 
assumptions and design considerations. 

2.1 Research Scope and Focus 
This research focuses on the confidentiality of DNS data, as it is requested from clients 
that are operating at different access classes.  It does not focus on other important aspects 
of DNS security, such as integrity and authenticity of name resolutions. 

2.2 Policy Assumptions 
The security policy, with respect to IP addresses and network device names, is assumed 
to be the following: 
 

1. While servicing clients at its sensitivity level, a DNS daemon can read lower-
level DNS data files and provide the mapping to the requesting client.   
 
For example, a Secret subject may obtain the IP address of an Unclassified 
network device if it knows the name of the device.  Preventing the actual 
TCP/UDP connection from high to low is a network policy enforcement issue 
that is not considered in this report. 
 

2. A lower sensitivity level DNS client cannot resolve higher sensitivity level 
names, mappings, or other metadata.  
 
To limit covert channels, the client must get the same response whether the 
name exists or not. 
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3. Fully qualified domain names (i.e., the host name concatenated with its DNS 

domain name) are unique across an MLS enterprise network, as one would 
expect from the IP specification.   

2.3 MLS DNS Requirements 
The following list describes the requirements that an MLS DNS design must satisfy. 

1. Hosts shall be able to query a configured DNS server to resolve a name to an IP 
address without leaking information from high to low.  This includes hosts that 
operate at a single access class as well as hosts with MLS capabilities. 

2. DNS daemons shall be able to perform iterative queries that pass on enough 
information to other DNS servers (e.g., the original requestor’s access class) to 
allow the queried DNS server to make appropriate MAC policy decisions. 

3. DNS data shall be protected from observation and modification by unauthorized 
subjects when stored on DNS servers.  It is assumed that encryption is used to 
protect network communications on MLS networks, commensurate with the 
level(s) of data transmitted. 

4. Hosts requesting DNS data that exists at lower sensitivity levels shall be able to 
obtain it (i.e., perform a read down). 

5. Access to DNS data shall be controlled based on the access class of the requesting 
subject and the access class of the DNS data. 
We desire a DNS service in which individual DNS records may be labeled so that 
a coherent Enterprise IT security policy is possible.  This labeling must be on a 
record-by-record basis, a file-by-file basis, or a system-by-system basis (e.g., a 
particular DNS server only has names and IP addresses for one particular access 
class).  No matter which granularity is used, enforcement of the MAC policy must 
be based on the access class of the requesting subject and the classification of the 
requested DNS data. 

6. The assurance provided in components that store or resolve DNS data shall be 
commensurate with the confidentiality of the data and the operation of other 
subjects running on the component. 

7. The MLS DNS design shall be able to scale to a large number of access classes, 
both in terms of DNS data and requesting subjects. 

2.4 Some Implementation Considerations 
To illustrate some of the MLS DNS issues, Figure 1 shows a potential MLS network, 
where there exist single-level networks attached to an MLS network backbone, as well as 
a mix of MLS clients and servers.  The figure shows the DNS resolution for PC2, that 
will allow PC2 to communicate with PC1, where both PC1 and PC2 are operating at the 
Secret level.  Because PC2 does not have the destination IP address for PC1 it contacts its 
local DNS server to perform a search which is recursive from the perspective of PC2 but 
iterative at the local DNS server (step 1). The local DNS server does not know the 
complete answer, but the information provided is sufficient to cause it to contact an MLS 
DNS server (step 2).  However, the MLS server cannot complete the answer either, but it 
does provide to the local DNS server the IP address of a server that should know the IP 
address for PC1 (step 3).  The local DNS server queries the DNS server in the destination 
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domain for the IP address of PC1 (step 4), which it returns (step 5).  The local DNS 
server returns the desired IP address to PC2 (step 6), which then communicates with PC1 
(steps 7 and 8), by sending an IP packet with that destination address onto the network. 
 
“Broadcasting” of IP packets on an MLS network raises the question of MLS policy 
enforcement and covert channels.  It is assumed that the payload of messages higher than 
the level of the network will be suitably protected (encrypted), and that protection against 
traffic analysis of hosts higher than the level of the network will be provided. 
 

 

Figure 1. DNS in an MLS Context 

The point of Figure 1 is to show that single-level networks sitting off an MLS backbone 
may have their own single-level off-the-shelf unmodified DNS servers that may be 
configured to connect to root DNS servers that operate across many levels.  Local 
networks that have MLS capabilities will need a local MLS solution, which must be able 
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to communicate with single-level DNS servers in other networks, as well as other MLS 
servers.  In addition, the root DNS server(s) will need to be MLS because they are 
typically responsible for communicating with all DNS servers (at all access classes) 
within its DNS domain. 
 
Another issue, depending on the design, is that there may be a requirement for the DNS 
server to know with a high degree of confidence the access class of the subject making 
the DNS request so that a lower-level subject cannot obtain higher-level DNS data.  In 
such designs a secure and non-spoofable protocol would have to be developed for 
providing the access class to DNS servers.  

3 Recommendations 
After considering a number of approaches for enabling DNS in a MLS environment, the 
following subsections describe the recommendations for DNS in two specific and 
separate environments: the MYSEA Testbed and the DoD GIG Vision.  The MYSEA 
Testbed and the DoD GIG Vision were briefly described in Sections 1.9 and 1.10 
respectively.  For comparison with the recommended approaches, Appendix A describes 
other possible MLS DNS architectures that were considered. 
 
In addition to the policies and requirements discussed in Section 2, a number of factors 
affect prospects for near term implementation of MLS DNS.  The ideal solution would be 
one that required no modifications to current DNS software or protocols and was highly 
trustworthy.  Thus, a solution that minimizes modification and disruption of current DNS 
architectures is sought.  In addition, issues associated with the system’s operational 
environment as well as resources available for its construction must be considered. 

3.1 MYSEA Testbed 
The recommended solution for near-term demonstration on the MYSEA Testbed 
(described in Section 1.9) uses a custom DNS proxy and an unmodified single level 
COTS DNS service per level on each DNS platform.  Each daemon has its own file of 
DNS mappings. The proxy is a trusted subject that routes the request to the appropriate 
DNS daemon and enforces the MAC policy with respect to the access class of the request 
and the access class of the DNS daemon, as shown in Figure 2.  The access class of a 
DNS request is based on the client IP address.  Changes to a client session level will 
require a corresponding update to the DNS proxy’s table of IP address levels.  This is 
similar in design to the Secure Security Services (SSS) already implemented in the 
MYSEA Testbed. 
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Figure 2. Recommended Approach for MYSEA Testbed 

This approach is appealing because MYSEA already has functionality similar to the 
described proxy running on a high assurance MLS server, and the MYSEA Server 
already maintains the session level associated with client IP addresses.  The DNS proxy 
could be used to start DNS daemons on the MLS server to answer queries about the MLS 
domain, or forward DNS queries to the appropriate DNS server on a single-level network 
for resolution in other zones.  The OS ensures that the daemons can only access the 
appropriate DNS databases, and the multilevel proxy must forward requests to 
appropriate single level daemons. 
 
With multiple DNS daemons running on one physical platform, this approach will use 
more resources than a normal single instance of DNS.  The concern about scaling up to 
some large number of supported access classes on the MYSEA Server can be reduced 
somewhat because the proxy could be modified to only start DNS daemons at access 
classes that are actually requesting DNS data.  For example, if DNS requests are only 
being made from Unclass and Secret clients, then instances of the DNS daemon will only 
be started at Unclass and Secret; the DNS daemon could be left running as long as 
requests continue to arrive for its access class.  The proxy could be modified to stop the 
daemon after a configured amount of time has elapsed with no DNS traffic arriving for 
that daemon.  Or, the DNS daemon could be modified to exit after a specified period of 
inactivity. 
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With respect to the question of DNS daemons being able to read lower-level information, 
there are two possible solutions for this MLS DNS proxy, Single Level Daemon 
approach.  In the first solution the daemons can be configured to read the lower 
sensitivity DNS data, as long as the names associated with the lower sensitivity level IP 
addresses are in DNS zones that are distinct from higher sensitivity level zones, e.g., 
host.mil versus host.smil.mil, otherwise there could potentially be one name that exists at 
multiple levels that maps to different IP addresses at each of those access classes.  Instead 
of reading multiple DNS mapping files, the second solution for reading lower sensitivity 
level mappings is to merge all the appropriate DNS data files for a daemon into one file 
prior to the start of each daemon (i.e., merge only the files that are at or below the level of 
the starting daemon).  The merging could be done intelligently by performing a new 
merge of the data only if one of the input files has changed.  An added benefit to this 
second solution to reading lower-level information would be the identification of IP 
addresses and host names that have mistakenly been assigned to more than one access 
class.   
 
DNS policy decisions are MAC-based, so policy decisions do not require the name of the 
user making the request; the DNS proxy only needs to know the level of the original DNS 
request.  Therefore, if iterative DNS requests will take place between two or more MLS 
DNS servers, then a protocol for passing the access class of the request between proxies 
must be created.   
 
A positive side effect of the MLS DNS proxy, Single Level Daemon approach is that 
system administrators do not need to be concerned with the access class of DNS servers 
when configuring DNS clients; all clients on single-level or MLS networks, regardless of 
access class, are configured with the same MLS DNS Server IP addresses.  This removes 
the possibility of mis-configuring a client with the IP address of a higher-level DNS 
server. 
 
Unfortunately, this approach to implementing a MLS DNS solution in the MYSEA 
Testbed extends the security perimeter beyond the OS to include the proxy application, 
since it helps to enforce the MLS policy.  However, this approach might not require 
modifications to existing DNS software (depending on how the proxy is designed, and 
how the existing DNS software can work with a proxy), but it does require the 
development of new software, i.e., the DNS proxy. 

3.2 DoD GIG Vision 
The DoD GIG Vision has an overall design that is similar to the MYSEA Testbed, 
namely, it has single level networks at varying access classes that are connected to a 
common MLS backbone.  It is also envisioned that there would be some number of MLS 
clients and servers. [13]  Therefore, one MLS DNS solution would be the implementation 
of the MYSEA architecture, as described above.  If the MYSEA architecture is not 
suitable for one or more reasons to be determined, this section describes an alternative 
approach for the DoD GIG Vision. 
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This approach uses an (to be determined) operating system (OS) to interpret destination 
IP addresses and route DNS requests to a single-level DNS daemon.  There is one DNS 
daemon per access class, but they are all running on one physical server (or some set of 
servers, depending on the load), as shown in Figure 3. 
 

 

Figure 3. Recommended Approach for DoD GIG Vision 

This is similar to the MYSEA Testbed recommendation, described in Section 3.1, but the 
differences are subtle and important.  In this approach, the mechanism for multiplexing 
the DNS request is the operating system (not an application-level proxy).  The OS routing 
decision to a DNS daemon is based on the destination IP address of the requesting 
packet rather than the access class of the requester (as with the MYSEA approach).   
 
Each DNS daemon would have to be configured to listen to a different IP address, 
because each is listening to the same TCP/UDP port.  The operating system would have 
to support the ability to assign multiple IP addresses to the same network interface card 
(NIC), which is a feature that may not be currently available.  (Note that having multiple 
NICs, with one access class per NIC does not scale well, nor is it flexible enough to 
accommodate dynamic changes to the number of access classes as policy evolves).  Each 
client would be configured with the IP address of the correct DNS server for its access 
class, so there is no need to dynamically communicate the access class of the request to 
the DNS daemons, which is very appealing because it eliminates the need to develop new 
software or modify existing DNS software.   
 
A different view of this approach is to use a high assurance separation kernel [14][15] as 
the trusted decision maker, which forwards the requests to daemons running in separate 
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partitions.  The daemons would return the responses to the decision maker to forward to 
the requesting client. 
 
As with the MYSEA solution: 1) having one DNS daemon per access class requires more 
hardware resources than the normal single instance per DNS server, so scaling to a larger 
number of access classes would require additional servers to handle the load; 2) this 
approach also requires a high assurance MLS server to ensure that the untrusted DNS 
daemons servicing lower-level access classes cannot read the higher-level DNS data files; 
and 3) the tradeoff for not needing new DNS daemon software must be balanced with the 
cost of buying MLS servers, because high assurance MLS servers tend to be expensive 
and feature-poor. 
 
Supporting DNS requests from MSL or MLS clients becomes an issue because the 
destination IP address for the DNS server depends on a user’s changing session level.  An 
MLS client can only be supported in this approach if the client OS, or a client proxy like 
the Trusted Path Extension (TPE) [12], can dynamically change the destination DNS 
server IP address based on the session level of the requesting subject. 
 
This approach can easily deal with the problem of recursive lookups by DNS daemons.  
All daemons would be configured to query DNS servers (via a destination IP address) 
that store the same level of information.  Therefore, no changes in DNS protocols are 
required to support it. 
 
This approach assumes that the GIG Vision network will have some method of 
identifying and handling inappropriate requests (e.g., a deliberately misconfigured lower 
sensitivity level client that tries to resolve names with a DNS server that is meant to 
service higher sensitivity level requests).  For example, there could be a cryptographic 
binding of an IP packet to an access class, which can be verified by a trusted component. 
 
Currently, there is no appropriate high assurance OS available that can support the 
solution described in this subsection. 

4 Previous Work 
No previously published research was found that directly addressed the problems of DNS 
in an MLS environment.  There are, however, publications that describe multilevel 
solutions for related functions.  These are summarized below. 

4.1 Multilevel Relational Databases 
Beginning with the 1982 “Summer Study” [16] much has been researched and written 
about securely supporting multilevel data in a relational database [17][18][19].  In such a 
database, the records in a table will likely have various classifications.  The results of a 
database query would therefore be dependent on the access class of the subject making 
the request; a higher-level subject would see records at more sensitivity levels than a 
lower-level subject, as expected.   
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An unexpected quality of a multilevel database is the result of inserting records into the 
database, similar to the problem of handling metadata in an MLS file system (see Section 
1.5).  If a subject at a lower level tries to insert a new record, but the primary key of the 
new record already exists at a higher level, what should the database do?  If the record is 
accepted, then two records exist with the same primary key – something that goes against 
the “rules” of relational databases.  On the other hand, if the record is not accepted, as 
one would expect, the lower level subject is able to infer knowledge that exists at a higher 
level.  This could be used as a covert channel for information leakage.  In this situation 
the SeaView model [19] accepts the record with the duplicate key by considering the 
primary key to be a combination of the defined field and the classification of the inserted 
data.  This existence of two records with the same traditional primary key is known as 
polyinstantiation.  However, due to the current understanding of how the DoD networks 
are managed, names and IP addresses are unique across all classified networks, so there 
should be no polyinstantiation issues to deal with in the DoD multilevel DNS 
architecture.  There may indeed be system administrators at varying levels of clearance 
inserting records into the DNS data files for their local name space, but the operational 
management of the names and addresses (i.e., the distribution of IP addresses by a central 
high-level office) should prevent a situation where two or more different answers to a 
query are possible, depending on the subject’s access class. 

4.2 Multilevel DoD Directory Services 
There was some prior research performed to design a multilevel directory service for the 
DoD.  “Directory service” in this context refers to an X.500-style “white pages” and 
“yellow pages” service where information about individuals or other entities could be 
stored and publicly queried.  A prototype directory service was implemented on a 
prototype implementation of the SeaView model. [20] 
 
The X.500 architecture consists of a series of distributed and “hierarchically organized” 
servers (known as Directory System Agents, or DSAs) that can either answer a query 
directly if it has the requested data, or it can query the next DSA (recursively, as with 
DNS) in the chain to continue the search.  The DoD requirements for the directory 
services included the support for both classified and unclassified data, as well as users 
with different clearances. [20] 
 
Because X.500 was not designed to handle multiple classifications of data, the research is 
very applicable to the multilevel DNS problem.  One analysis concluded that the most 
useful approach was to deploy high assurance servers on an MLS network where both 
high and low level data would be stored, and to have the DSA implementations run 
mostly as trusted subjects on the MLS servers, where the applications were aware of and 
helped to enforce the security policy [21].  The requesting clients would be single-level.  
However, recognizing that such high assurance MLS systems and software did not exist, 
the recommended short-term approach was to use high assurance MLS servers, each 
attached to several single-level networks, where MLS-ignorant single-level subjects (per 
access class) on the server could service the requests made by clients within the single-
level networks. [21]  These are both viable solutions for multilevel DNS under certain 
conditions.   
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5 Future Work 
This research focused on environments where IP addresses and names are distinct across 
access classes, as one would expect from the IP specification.  No analysis was 
performed with respect to polyinstantiation of addresses.   
 
There cannot be a complete discussion of DNS without also considering how it affects 
the Dynamic Host Configuration Protocol (DHCP) [22].  This research should be 
expanded to consider the effects of the proposed solutions on DHCP.  Is a MLS DHCP 
server necessary and, if so, how should it be designed to work with MLS DNS?   
 
In addition to the impact on the DHCP protocol, additional research is needed to consider 
how MLS affects an implementation or configuration of the DNS Security Extensions 
(DNSSEC) [23].  The DNSSEC protocol uses public key technology to provide integrity 
and authenticity of DNS data. 
 
An investigation to determine the characteristics of the current open source options for 
DNS daemons should be conducted. Which software is most conducive to being 
modified, e.g., which has the best documentation, best layering, the right combination of 
features, etc? 
 
DNS has a little-used record type, LOC, which with appropriate authentication could be 
used to document the location of a particular network node, requiring longitude, latitude 
and altitude in its syntax.  It may be possible to use this in some way to provide context-
sensitive information for the GIG Vision Risk-Adaptive Access Control (RAdAC), 
which, among other things, uses the location of a subject to make access control 
decisions. 
 
Research is needed to determine whether the current DNS protocol provides optional 
fields in the defined TCP/UDP packets that might be used in some way to communicate 
the access class of a DNS request with high assurance rather than basing the access class 
on the requestor’s address.  In other words, is it possible to securely label a DNS request 
in some fashion without modifying the DNS header specification?  At the same time, 
research can be performed on the IP header to determine if it can be used to communicate 
access class information securely.  Encryption may be yet another option for 
communicating an access class based on a given key, or some other feature of encryption 
protocols, such as IPSEC. 
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Appendix A: Other Possible MLS DNS Architectures 
This Appendix documents several alternative MLS DNS approaches that were considered 
when examining the needs of the MYSEA Testbed and the GIG Vision.  Each approach 
is described, along with its advantages and disadvantages. 

Approach 1: One COTS DNS Daemon Using DNS Views 
In this approach there is one Commercial off-the-shelf (COTS) DNS daemon on each 
DNS platform and a data file for each access class.  The access class of the DNS request 
is determined by the source IP address of the DNS request.   
 
This approach can be implemented using a mechanism introduced by BIND 9 called 
views.  Views allow a DNS server to respond differently to a DNS request, depending on 
the IP address of the requestor, as shown in Figure 4.  The DNS data files are populated 
based on the access class of the IP address. 
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Figure 4. Approach 1: One COTS DNS Daemon Using DNS Views 

The DNS daemon bases its view decision on the source IP address of the requestor, 
which indicates which DNS data file to refer to when searching for a match.  This 
approach does not require the DNS daemon to directly know the access class of a DNS 
request; rather, that information is encoded in the source IP address and DNS 
configuration file. 

Approach 1 Disadvantages 
Views are established by specifying a range of IP addresses, such as “192.168.1/24” or 
by one of the following special tokens: “any”, “none”, “localhost”, and “localnets”.  
Therefore, the use of views will only work if the network address space is divided by 
access class, as currently done in the GIG. The number of supported access classes is 
therefore limited to defined ranges of addresses.  In addition, a statically addressed client 
could not operate at multiple session levels, but instead must be tied to a specific access 
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class.  Therefore, an MSL client is only possible if the client OS uses a source IP address 
for network communications that corresponds to the access class of the requesting subject 
(i.e., a different IP address per access class). 
 
This approach extends the security perimeter all the way to the application layer, 
requiring the potentially untrustworthy DNS application to make access control 
decisions.  In other words, it is trusted to do the right thing but if not specially built and 
evaluated it will not be worthy of that trust.  For example, there is no guarantee that the 
code is un-modifiable (e.g., free of buffer overflow vulnerabilities) and no guarantee that 
policy enforcement could not be bypassed.  There is also no guarantee that there is no 
unspecified behavior in the code, such as Trojan horses or backdoors.  If a high assurance 
version of DNS daemons was available to run on a high assurance OS, all these concerns 
become irrelevant.  Unfortunately, such daemons do not currently exist. 
 
Because there are no access class comparisons to determine whether the mapping should 
be provided to the requestor, the DNS daemon does not enforce MAC policy, but rather 
enforces a configuration.  Therefore, though this approach appears to work, it is not a true 
MLS solution.  Without modification of the BIND software, read-down is only possible if 
the information in lower-level views is copied to higher-level views.  This problem could 
be minimized by having a script that merges the DNS mapping data together at DNS 
server startup.  However, updates to the lower-level DNS data files made after daemon 
startup would not take effect at higher levels without an occasional resynchronization of 
the data files 
 
Because the policy is being enforced based on the source IP address of the requestor, the 
underlying network access control would have to be able to detect a system that has had 
its IP address changed to an improper range for the device, and then disallow network 
communications.  All other known types of IP spoofing attacks would also need to be 
addressed as well, to ensure the integrity of source addresses. 
 
Though this approach initially appears to require no modifications to existing DNS 
software, this is false.  When the daemon needs to perform a recursive DNS query there 
needs to be some mechanism for passing access class information (which in this case is 
the source IP address of the originating query) to the downstream DNS servers.  Such a 
mechanism would require some level of modification to the existing DNS software.  
Without a high assurance DNS implementation or modification, this approach does not 
meet the high assurance requirement as stated in 2.3. 
 
If the underlying system does not provide MLS functionality, then the OS cannot separate 
DNS data files based on the classification of the data.  In such a situation the DNS 
daemon must be the only process running on the server.  This will protect the DNS data 
files from other untrustworthy programs. 
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Approach 1 Advantages 
With this approach, system administrators do not need to be concerned with the access 
class of DNS servers when configuring DNS clients.  This removes the possibility of mis-
configuring a client with the IP address of a higher-level DNS server. 
 
No MLS servers are required to run the DNS daemon, though the enforcement method 
for a network access control policy may have its own MLS requirements.   

Approach 2: One COTS DNS Daemon, Multiple Single-Level DNS 
Data Files 
In this approach the DNS view feature is modified to use the access class of the 
requesting subject (rather than the source IP address) to determine the DNS data file to 
search.  This approach, shown in Figure 5, is very similar to Approach 1 where the DNS 
daemon enforces the MAC policy. 
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Figure 5. Approach 2: One COTS DNS Daemon, Multiple Single-Level DNS Data 
Files 

Approach 2 Disadvantages 
Since policy enforcement is being performed by an untrusted application, this approach 
has the same concerns as those described in Approach 1.   
 
The existing DNS software would need to be modified to implement Approach 2.  Even 
given that the code changes could be implemented successfully, the cost of maintaining 
and upgrading the software would have to be considered.  These include fixing security-
relevant bugs that have been found in BIND, or software updates as changes to the DNS 
protocol are ratified and new versions of BIND are released. 
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Without additional modifications to the DNS software, the daemon would not be able to 
resolve names that exist at a lower level, because the lower level DNS data are in 
different files.  However, it may be possible to merge DNS data files appropriately at 
daemon startup.  Changes made after startup would not take effect at higher levels 
without an occasional resynchronization of the data files. 
 
Even though this approach does not require special MLS functionality from the 
underlying system, it should require a high level of assurance, since access control 
decisions are being made on the system.  If a high assurance operating system is used, 
hardware choices will be limited because such operating systems are evaluated against a 
limited set of hardware.  If the underlying system does not provide MLS functionality, 
then the configuration of the server should be restricted as described in Approach 1 
Disadvantages.  Without a high assurance DNS implementation or modification, this 
approach does not meet the high assurance requirement, as stated in 2.3.   
 
In addition to DNS source code modifications this approach requires the development of 
trusted protocols and software to communicate the access class of the requester of the 
DNS translation to the DNS daemon and then to DNS servers that are queried to handle 
iterative requests. 

Approach 2 Advantages 
The hardware requirements for the DNS server in this approach would not be any greater 
than a “normal” DNS server because only one DNS daemon is needed per system.   
 
With this approach, system administrators do not need to be concerned with the access 
class of DNS servers when configuring DNS clients.  This removes the possibility of mis-
configuring a client with the IP address of a higher-level DNS server. 
 
The syntax of the DNS data files would not need to change, which makes the 
modification of the BIND source code easier than it otherwise would have been. 

Approach 3: One DNS Daemon, One DNS Database 
This approach uses a single modified COTS DNS daemon with an MLS DNS database.  
It uses one DNS daemon as a trusted subject to enforce the MAC policy with respect to 
name resolution. The daemon compares the access class of the DNS request to the access 
class of the stored name-to-address mapping to determine whether the information should 
be released to the requestor, as shown in Figure 6. 
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Figure 6. Approach 3: One DNS Daemon, One DNS Database 

Approach 3 Disadvantages 
This approach extends the security perimeter all the way to the application layer, which 
has the same concerns as those described in Approach 1 Disadvantages. 
 
The existing DNS software would need to be modified to read a new set of configuration 
data to help enforce the new policy.  In addition, changes would have to be made to 
support the passing of access class information when iterative DNS requests are sent to 
other DNS servers.  Even if the code changes could be implemented successfully, the cost 
of maintaining and upgrading the software would have to be considered.  These include 
fixing security-relevant bugs that have been found in BIND, or software updates as 
changes to the DNS protocol are ratified and new versions of BIND are released. 
 
Even though this approach does not require special MLS functionality of the underlying 
system, it requires a high level of assurance, since access control decisions are being 
made on the system.  If a high assurance operating system is used, hardware choices will 
be limited because such operating systems are evaluated against a limited set of 
hardware.  If the underlying system does not provide MLS functionality, then the 
configuration of the server should be restricted as described in Approach 1 
Disadvantages. 
 
This approach also requires the development of trusted protocols and software to 
communicate the access class of the requester of the DNS translation to the DNS daemon 
and then to DNS servers that are queried to handle iterative requests. 

Approach 3 Advantages 
The hardware requirements for the DNS server in this approach would not be any greater 
than a “normal” DNS server because only one DNS daemon is needed per DNS system.   
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All DNS clients could be configured with the same single IP address for DNS resolution, 
without regard to the potential access class of the DNS request.  This removes the 
possibility of mis-configuring a client with the IP address of a higher-level DNS server. 

Approach 4: Many DNS Daemons on Many Physical Servers 
In this approach there exists one DNS platform per access class, each with one DNS data 
file.  DNS clients are configured to resolve queries with a server of the same access class, 
as shown in Figure 7. 
 

 

Figure 7. Approach 4: Many DNS Daemons on Many Physical Servers 

Approach 4 Disadvantages 
This is not a true MLS solution, but rather achieves separation of data by physical 
separation and configuration of components.   
 
Supporting DNS requests from an MLS client becomes an issue because the destination 
IP address for the DNS server depends on a user’s session level, which changes.  An 
MLS client can only be supported in this approach if the client OS can dynamically 
change the destination DNS server IP address based on the session level of the requesting 
subject. 
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Supporting multiple physical DNS servers increases the cost of hardware, operation and 
maintenance.  From a DNS point of view, there would be no cost savings by merging the 
currently separated DoD networks because there would still be (at least) as many DNS 
servers after the merge.   
 
Each client system needs to be configured with the IP address of its local DNS server.  In 
this approach, instead of that address being the same for all clients, it would change, 
depending on the highest-level of data the client is authorized to process and store, which 
introduces the potential for misconfiguration and leakage of data from high to low. 
  
The DNS daemons supporting higher-level access classes would not be able to resolve 
names that exist at a lower level, because the lower level DNS data are on different 
machines.   
 
Some method of identifying and handling inappropriate DNS requests must be 
developed, (e.g., a deliberately misconfigured lower-level client that tries to resolve 
names with a DNS server that is meant to service higher-level requests). 

Approach 4 Variations 
One variation to provide read down would be to manually merge lower-level information 
with the data maintained on the higher-level DNS servers, which is error prone, slow and 
costly. 
 
Another variation is to have a high assurance administrative console that actually 
manages the DNS data files (i.e., a “hidden master”) and pushes updates out to the DNS 
servers, including lower-level data merged with the higher-level DNS data files. 

Approach 4 Advantages 
Absolutely no modifications to DNS software or file syntax will be required, greatly 
reducing the cost of implementation (to be balanced with the increased hardware costs), 
as well as the risk of implementation failure. 
 
No expensive MLS servers are required to run the DNS daemon, though the method for 
enforcing a network access control policy may have its own MLS requirements.  
Otherwise, commodity hardware and operating systems can be used with this approach. 
 
This approach can easily deal with the problem of DNS servers needing to perform 
iterative DNS queries; all servers are only configured to query DNS servers that store the 
same level of information.  Therefore, no changes in DNS protocols are required to 
support it. 

Approach 5: Treat all IP Addresses as Unclassified Data 
Within a distributed MLS environment (e.g., enclave or group of enclaves) in which 
network addresses are not sensitive, a standard COTS DNS platform, daemons and data 
files can be used.  If all DNS data is labeled Unclassified, then a DNS daemon could 
execute at the Unclassified level on an MLS server.  A problem arises because subjects 
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executing at a higher access class would be unable to query a DNS subject running at the 
lower level, because it would involve a write down, and would violate basic Bell-
LaPadula rules.  One solution is to execute the DNS daemon as a trusted subject that is 
MLS ignorant.  It would be able to read the DNS data at all access classes as well as 
communicate with subjects at all access classes.  An easier approach is to use a 
commodity OS that does not support MLS, and communicates with no regard to access 
class, but this introduces possibilities for information leakage channels.   
 
If a network device was named in a way that revealed its access class or importance (e.g., 
veryimportantserver.navy.mil), then that is a problem of a different sort, and could be 
dealt with via policy statements, such as those found in DoD Operational Security 
(OPSEC) policies [24] that require network devices to be named in such a way that the 
names do not provide sensitive information about the devices. 

Approach 5 Disadvantages 
This approach would only be acceptable in environments in which IP addresses are not 
sensitive.  In addition, in order to provide high assurance, the DNS daemon or the DNS 
resolver in the clients must be trustworthy, because the DNS daemon can communicate 
with subjects at all levels, introducing a channel for information leakage.  This appears to 
remove what appeared to be the major advantage to this approach: use of COTS hardware 
and software to support DNS, because no high assurance DNS implementations exist, and 
these would therefore have to be implemented from scratch using high assurance 
methods. 

Approach 5 Advantages  
This approach will work in harmony with any other approach, even in the GIG, where 
various organizations may have different policies about IP address sensitivity, assuming 
each organization has control over its DNS servers. 
 
This approach does not require any modifications to the DNS configuration and data 
files, but the need to re-write the DNS software makes the advantage somewhat 
irrelevant. 
 
This approach does not need MLS functionality from the underlying OS, reducing the 
potential cost of the DNS servers.  Commodity hardware and operating systems can be 
used with this approach.  This approach is easy to administer, and does not require more 
resources than a “normal” DNS installation would require. 

Approach 6: Development of a High Assurance DNS Daemon 
Coverage of potential options would not be complete without considering the 
development of a trusted DNS daemon from scratch.  In this approach there would be a 
single custom high assurance MLS daemon per DNS platform that manages a single 
MLS DNS database.  There are two options: 1) develop an MLS-aware DNS daemon 
from scratch, but which depends on an underlying MLS Server to enforce the MAC 
policy (i.e., a high assurance variation of the recommended MYSEA solution, described 
in Section 3.1); or 2) develop a DNS daemon from scratch that runs as a trusted subject, 
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enforcing its own policy (i.e., a high assurance version of Approach 3: One DNS 
Daemon, One DNS Database).   

Approach 6 Disadvantages 
Because of the size and complexity of the project, as explained in Section 1.4, it would be 
a relatively costly effort to both design and implement a replacement DNS daemon that 
supports MLS, in addition to the effort to do so in a high assurance manner. 
 
If the underlying system does not provide MLS functionality, then the OS cannot separate 
DNS data files based on the classification of the data.  In such a situation the DNS 
daemon should be the only process running on the server.  This will protect the DNS data 
files from other untrustworthy programs. 
 
This approach requires the development of a trusted way to communicate the access class 
of the DNS request to the DNS daemon, as described in Approach 2 Disadvantages. 

Approach 6 Advantages 
Developing a daemon using high assurance methods makes it possible to create software 
that can be trusted to enforce an MLS DNS policy. 
 
By starting from scratch, the configuration file syntax could also be redesigned to allow 
for additional desired features, such as an access class designator.  The existing DNS 
configuration syntax has a reputation for being complex, so a potential advantage to this 
approach would be DNS files that are easier to manage.  Whether the existing 
configuration syntax is complex for a purpose, or complex because of backward 
compatibility, or a complex set of options, or whether its reputation for complexity is 
undeserved, would affect the difficulty of a syntax re-design.   
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Approach Comparison 
Table 1 provides a quick comparison of the disadvantages of the approaches described in 
this paper.  The approach properties are not equally weighted.  Therefore, a “score” 
cannot be determined by just adding up the occurrences in each column.  The legend for 
the table is given below. 
 

1 One COTS DNS Daemon Using DNS Views 
2 One COTS DNS Daemon, Multiple Single-Level DNS Data Files 
3 One DNS Daemon, One DNS Database 
4 Many DNS Daemons on Many Physical Servers 
5 Treat all IP Addresses as Unclassified Data 
6 Development of a High Assurance DNS Daemon 
M MYSEA Tested 
G DoD GIG Vision 

 
Table 1. Approach Disadvantages 

 
Approach Properties 1 2 3 4 5 63 M G 

DNS software modifications required √ √ √      
Re-write of entire DNS application     √ √   
Trusted subject (enforcing policy) √ √ √  √ √ √  
No run-time comparison of access classes √ √  √ √   √ 
Approach is low assurance √ √ √    √  
MLS OS required for server       √ √ 
Network access control required √   √    √ 
Requires development of software and 
protocols outside of the DNS platform 

√ √ √ √  √ √  

One DNS server IP address per access 
class 

   √    √ 

 
 
“Network access control required” refers to the necessity of having a mechanism that 
would prevent the spoofing of IP addresses for those approaches that rely on the source 
or destination IP address of a network packet to make access control decisions. 
 
“Requires development of software and protocols outside of the DNS platform” refers to 
the need to develop software that is not directly tied to the modification or re-write of the 
DNS daemon code base. 
 

                                                 
3 The properties of this approach are very dependent on the design choices made; this may not be a 
complete list of properties associated with Approach 6. 
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Table 2 restates the seven requirements set forth in Section 2.3 and identifies the 
approaches that meet each requirement.  There are cases where the satisfaction of a 
requirement by an approach is subjective. 
 

Table 2. Approaches mapped to Requirements 
 

Approach Requirements 1 2 3 4 5 6 M G 
1. Clients shall be able to resolve an 

address at any access class. √ √ √ √ √ √ √ √ 

2. Iterative DNS queries shall preserve 
the access class of the initiating client. √ √ √ √ √ √ √ √ 

3. DNS data shall be protected from 
observation and modification. √ √ √ √ √ √ √ √ 

4. Clients can do a read-down of DNS 
data. √ √ √ √ √ √ √ √ 

5. Access to DNS data is based on access 
class of 1) requester and 2) DNS data. √ √ √ √ √ √ √ √ 

6. Assurance shall be applied 
appropriately.    √ √ √ √ √ 

7. Scalable. √ √ √  √ √  √ 
 
 
Table 2 clearly shows that there are only three approaches that meet all the previously 
stated requirements: Approaches 5, 6, and the approach described for the GIG.  However, 
the results of Table 2 must be balanced with the results of Table 1. 
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